Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Br Dent J ; 234(8): 593-600, 2023 04.
Article in English | MEDLINE | ID: covidwho-2294893

ABSTRACT

Introduction The purpose of this study was to test the short-term efficacy of four commercial mouthwashes versus water in reducing SARS-CoV-2 viral load in the oral cavity over clinically relevant time points.Methods In total, 32 subjects that were proven SARS-CoV-2-positive via polymerase chain reaction (PCR)-based diagnostic test were recruited and randomised into five parallel arms. Cycle threshold (Ct) values were compared in saliva samples between the groups, as well as within the groups at baseline (pre-rinse), zero hours, one hour and two hours post-rinse, using SARS-CoV-2 reverse transcription-PCR analysis.Results We observed a significant increase in Ct values in saliva samples collected immediately after rinsing with all the four mouthwashes - 0.12% chlorhexidine gluconate, 1.5% hydrogen peroxide, 1% povidone iodine, or Listerine - compared to water. A sustained increase in Ct values for up to two hours was only observed in the Listerine and chlorohexidine gluconate groups. We were not able to sufficiently power this clinical trial, so the results remain notional but encouraging and supportive of findings in other emerging mouthwash studies on COVID-19, warranting additional investigations.Conclusions Our evidence suggests that in a clinical setting, prophylactic rinses with Listerine or chlorhexidine gluconate can potentially reduce SARS-CoV-2 viral load in the oral cavity for up to two hours. While limited in statistical power due to the difficulty in obtaining this data, we advocate for pre-procedural mouthwashing, like handwashing, as an economical and safe additional precaution to help mitigate the transmission of SARS-CoV-2 from a potentially infected patient to providers.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mouthwashes/therapeutic use , COVID-19/prevention & control , Viral Load
2.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2285292

ABSTRACT

The emergence of COVID-19 has led to significant morbidity and mortality, with around seven million deaths worldwide as of February 2023. There are several risk factors such as age and sex that are associated with the development of severe symptoms due to COVID-19. There have been limited studies that have explored the role of sex differences in SARS-CoV-2 infection. As a result, there is an urgent need to identify molecular features associated with sex and COVID-19 pathogenesis to develop more effective interventions to combat the ongoing pandemic. To address this gap, we explored sex-specific molecular factors in both mouse and human datasets. The host immune targets such as TLR7, IRF7, IRF5, and IL6, which are involved in the immune response against viral infections, and the sex-specific targets such as AR and ESSR were taken to investigate any possible link with the SARS-CoV-2 host receptors ACE2 and TMPRSS2. For the mouse analysis, a single-cell RNA sequencing dataset was used, while bulk RNA-Seq datasets were used to analyze the human clinical data. Additional databases such as the Database of Transcription Start Sites (DBTS), STRING-DB, and the Swiss Regulon Portal were used for further analysis. We identified a 6-gene signature that showed differential expression in males and females. Additionally, this gene signature showed potential prognostic utility by differentiating ICU patients from non-ICU patients due to COVID-19. Our study highlights the importance of assessing sex differences in SARS-CoV-2 infection, which can assist in the optimal treatment and better vaccination strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Male , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , COVID-19/genetics , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Immunologic Factors , Interferon Regulatory Factors/metabolism
3.
Biomolecules ; 13(1)2023 01 09.
Article in English | MEDLINE | ID: covidwho-2199741

ABSTRACT

Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , COVID-19/complications , COVID-19/genetics , Genetic Predisposition to Disease , Nervous System Diseases/genetics , Genotype
6.
mSphere ; 7(3): e0017922, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1854243

ABSTRACT

To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Reinfection , Seroepidemiologic Studies
7.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820436

ABSTRACT

In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we assessed anti-RBD antibody levels in over 1000 people and found no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, a significant waning of antibody levels was observed following vaccination. Participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to higher antibody levels, which were maintained at higher levels than in previously infected, unvaccinated participants. Older participants exhibited lower level of antibodies after vaccination, but a higher level after infection than younger people. The rate of antibody waning was not affected by pre-immunity or age. Participants who received a third dose of an mRNA vaccine not only increased their antibody levels ~14-fold, but also had ~3 times more antibodies compared to when they received their primary vaccine series. PBMC-derived memory B cells from 13 participants who lost all circulating antibodies were differentiated into antibody secreting cells (ASCs). There was a significant recall of memory B cell ASCs in the absence of serum antibodies in 5-8 of the 10 vaccinated participants, but not in any of the 3 infected participants, suggesting a strong connection between antibody levels and the effectiveness of memory B cell recall.

8.
Sci Rep ; 12(1): 3480, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730307

ABSTRACT

The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection of SARS-CoV-2, influenza A and B viruses in a single-test. This study evaluated clinical specimens (n = 1411), 1019 saliva and 392 nasopharyngeal swab (NPS), tested using two-assays: FDA-EUA approved SARS-CoV-2 assay that targets N and ORF1ab gene, and the PKamp-RT-PCR based assay that targets SARS-CoV-2, influenza viruses A and B. Of the 1019 saliva samples, 17.0% (174/1019) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [91.9% (160/174) vs. 87.9% (153/174)], respectively. Of the 392 NPS samples, 10.4% (41/392) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [97.5% (40/41) vs. 92.1% (39/41)], respectively. This study presents clinical validation of a multiplex-PCR assay for testing SARS-CoV-2, influenza A and B viruses, using NPS and saliva samples, and demonstrates the feasibility of implementing the assay without disrupting the existing laboratory workflow.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Limit of Detection , Reproducibility of Results
9.
iScience ; 25(2): 103760, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1683208

ABSTRACT

Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.

10.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-1615353

ABSTRACT

Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely-ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in 9 patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with inter-individual variability in COVID-19 phenotypes. Graphical

11.
Aging Dis ; 13(2): 344-352, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1538867

ABSTRACT

The COVID-19 pandemic caused by the novel SARS-CoV-2 coronavirus is an ongoing pandemic causing severe health crisis worldwide. Recovered COVID-19 patients go through several long-term side effects such as fatigue, headaches, dizziness, weight loss, and muscle loss among others. Our study sought to determine the molecular mechanisms behind muscle loss in COVID-19 patients. We hypothesized that multiple factors such as cytokine storm and therapeutic drugs (glucocorticoid and antiviral drugs) might be involved in muscle loss. Using the Gene Expression Omnibus database, we identified several studies that performed RNA sequencing on skeletal muscles with the treatment of cytokine, glucocorticoid, and antiviral drugs. Our study identified cytokines, such as IL-1b, and IL-6, associated with altered regulation of several genes involved in the myogenic processes, including Ttn, Cxxc5, Malat1, and Foxo1. We also observed that glucocorticoid altered the expression of Foxo1, Lcn2, Slc39a14, and Cdkn1a. Finally, we found out that the antiviral (RNA-dependent RNA polymerase inhibitor) drug regulates the expression of some of the muscle-related genes (Txnip, Ccnd1, Hdac9, and Fbxo32). Based on our findings, we hypothesize that the cytokine storm, glucocorticoids, and antiviral drugs might be synergistically involved in COVID-19-dependent muscle loss.

12.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: covidwho-1470994

ABSTRACT

Two serious public health challenges have emerged in the current COVID-19 pandemic namely, deficits in SARS-CoV-2 variant monitoring and neglect of other co-circulating respiratory viruses. Additionally, accurate assessment of the evolution, extent, and dynamics of the outbreak is required to understand the transmission of the virus. To address these challenges, we evaluated 533 samples using a high-throughput next-generation sequencing (NGS) respiratory viral panel (RVP) that includes 40 viral pathogens. The performance metrics revealed a PPA, NPA, and accuracy of 95.98%, 85.96%, and 94.4%, respectively. The clade for pangolin lineage B that contains certain distant variants, including P4715L in ORF1ab, Q57H in ORF3a, and S84L in ORF8 covarying with the D614G spike protein mutation, were the most prevalent early in the pandemic in Georgia, USA. The isolates from the same county formed paraphyletic groups, indicating virus transmission between counties. The study demonstrates the clinical and public health utility of the NGS-RVP to identify novel variants that can provide actionable information to prevent or mitigate emerging viral threats and models that provide insights into viral transmission patterns and predict transmission/resurgence of regional outbreaks as well as providing critical information on co-circulating respiratory viruses that might be independent factors contributing to the global disease burden.


Subject(s)
COVID-19/epidemiology , Genome, Viral/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/transmission , High-Throughput Nucleotide Sequencing , Humans , Limit of Detection , Phylogeny , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
14.
Mediators Inflamm ; 2021: 2911578, 2021.
Article in English | MEDLINE | ID: covidwho-1455770

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), affecting multiple organ systems, including the respiratory tract and lungs. Several studies have reported that the tryptophan-kynurenine pathway is altered in COVID-19 patients. The tryptophan-kynurenine pathway plays a vital role in regulating inflammation, metabolism, immune responses, and musculoskeletal system biology. In this minireview, we surmise the effects of the kynurenine pathway in COVID-19 patients and how this pathway might impact muscle and bone biology.


Subject(s)
Bone Diseases/etiology , COVID-19/complications , Kynurenine/metabolism , Muscular Diseases/etiology , SARS-CoV-2 , Tryptophan/metabolism , Animals , Humans , Receptors, Aryl Hydrocarbon/physiology , Signal Transduction/physiology
15.
PLoS One ; 16(9): e0257563, 2021.
Article in English | MEDLINE | ID: covidwho-1416905

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 is a serious health threat causing worldwide morbidity and mortality. Real-time reverse transcription PCR (RT-qPCR) is currently the standard for SARS-CoV-2 detection. Although various nucleic acid-based assays have been developed to aid the detection of SARS-CoV-2 from COVID-19 patient samples, the objective of this study was to develop a diagnostic test that can be completed in 30 minutes without having to isolate RNA from the samples. Here, we present an RNA amplification detection method performed using reverse transcription loop-mediated isothermal amplification (RT-LAMP) reactions to achieve specific, rapid (30 min), and sensitive (<100 copies) fluorescent detection in real-time of SARS-CoV-2 directly from patient nasopharyngeal swab (NP) samples. When compared to RT-qPCR, positive NP swab samples assayed by fluorescent RT-LAMP had 98% (n = 41/42) concordance and negative NP swab samples assayed by fluorescent RT-LAMP had 87% (n = 59/68) concordance for the same samples. Importantly, the fluorescent RT-LAMP results were obtained without purification of RNA from the NP swab samples in contrast to RT-qPCR. We also show that the fluorescent RT-LAMP assay can specifically detect live virus directly from cultures of both SARS-CoV-2 wild type (WA1/2020), and a SARS-CoV-2 B.1.1.7 (alpha) variant strain with equal sensitivity to RT-qPCR. RT-LAMP has several advantages over RT-qPCR including isothermal amplification, speed (<30 min), reduced costs, and similar sensitivity and specificity.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Diagnostic Tests, Routine/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Humans , RNA, Viral/isolation & purification , Sensitivity and Specificity
16.
Diagnostics (Basel) ; 11(9)2021 Sep 05.
Article in English | MEDLINE | ID: covidwho-1390561

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is an infectious virus that causes coronavirus disease 2019 (COVID-19) transmitted mainly through droplets and aerosol affecting the respiratory tract and lungs. Little is known regarding why some individuals are more susceptible than others and develop severe symptoms. In this study, we analyzed the nasopharyngeal microbiota profile of aged patients with COVID-19 (asymptomatic vs. symptomatic) vs. healthy individuals. We examined the nasopharynx swab of 84 aged-matched patients, out of which 27 were negative asymptomatic (NegA), 30 were positive asymptomatic (PA), and 27 patients were positive symptomatic (PSY). Our analysis revealed the presence of abundant Cyanobacterial taxa at phylum level in PA (p-value = 0.0016) and PSY (p-value = 0.00038) patients along with an upward trend in the population of Litoricola, Amylibacter, Balneola, and Aeromonas at the genus level. Furthermore, to know the relationship between the nasal microbiota composition and severity of COVID-19, we compared PA and PSY groups. Our data show that the nasal microbiota of PSY patients was significantly enriched with the signatures of two bacterial taxa: Cutibacterium (p-value = 0.045) and Lentimonas (p-value = 0.007). Furthermore, we also found a significantly lower abundance of five bacterial taxa, namely: Prevotellaceae (p-value = 7 × 10-6), Luminiphilus (p-value = 0.027), Flectobacillus (p-value = 0.027), Comamonas (p-value = 0.048), and Jannaschia (p-value = 0.012) in PSY patients. The dysbiosis of the nasal microbiota in COVID-19 positive patients might have a role in contributing to the severity of COVID-19. The findings of our study show that there is a strong correlation between the composition of the nasal microbiota and COVID-19 severity. Further studies are needed to validate our finding in large-scale samples and to correlate immune response (cytokine Strome) and nasal microbiota to identify underlying mechanisms and develop therapeutic strategies against COVID-19.

17.
Front Immunol ; 12: 660019, 2021.
Article in English | MEDLINE | ID: covidwho-1389181

ABSTRACT

SARS-CoV-2 is the cause of a recent pandemic that has led to more than 3 million deaths worldwide. Most individuals are asymptomatic or display mild symptoms, which raises an inherent question as to how does the immune response differs from patients manifesting severe disease? During the initial phase of infection, dysregulated effector immune cells such as neutrophils, macrophages, monocytes, megakaryocytes, basophils, eosinophils, erythroid progenitor cells, and Th17 cells can alter the trajectory of an infected patient to severe disease. On the other hand, properly functioning CD4+, CD8+ cells, NK cells, and DCs reduce the disease severity. Detailed understanding of the immune response of convalescent individuals transitioning from the effector phase to the immunogenic memory phase can provide vital clues to understanding essential variables to assess vaccine-induced protection. Although neutralizing antibodies can wane over time, long-lasting B and T memory cells can persist in recovered individuals. The natural immunological memory captures the diverse repertoire of SARS-CoV-2 epitopes after natural infection whereas, currently approved vaccines are based on a single epitope, spike protein. It is essential to understand the nature of the immune response to natural infection to better identify 'correlates of protection' against this disease. This article discusses recent findings regarding immune response against natural infection to SARS-CoV-2 and the nature of immunogenic memory. More precise knowledge of the acute phase of immune response and its transition to immunological memory will contribute to the future design of vaccines and the identification of variables essential to maintain immune protection across diverse populations.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Disease Resistance , Epitopes, T-Lymphocyte/immunology , Humans , Immunity, Cellular , Immunologic Memory
18.
Vaccines (Basel) ; 9(8)2021 Aug 08.
Article in English | MEDLINE | ID: covidwho-1348704

ABSTRACT

In the United States, African Americans (AAs) have been disproportionately affected by COVID-19 mortality. However, AAs are more likely to be hesitant in receiving COVID-19 vaccinations when compared to non-Hispanic Whites. We examined factors associated with vaccine hesitancy among a predominant AA community sample. We performed a cross-sectional analysis on data collected from a convenience sample of 257 community-dwelling participants in the Central Savannah River Area from 5 December 2020, through 17 April 2021. Vaccine hesitancy was categorized as resistant, hesitant, and acceptant. We estimated relative odds of vaccine resistance and vaccine hesitancy using polytomous logistic regression models. Nearly one-third of the participants were either hesitant (n = 40, 15.6%) or resistant (n = 42, 16.3%) to receiving a COVID-19 vaccination. Vaccine-resistant participants were more likely to be younger and were more likely to have experienced housing insecurity due to COVID-19 when compared to both acceptant and hesitant participants, respectively. Age accounted for nearly 25% of the variation in vaccine resistance, with 21-fold increased odds (OR: 21.93, 95% CI: 8.97-5.26-91.43) of vaccine resistance in participants aged 18 to 29 compared to 50 and older adults. Housing insecurity accounted for 8% of the variation in vaccine resistance and was associated with 7-fold increased odds of vaccine resistance (AOR: 7.35, 95% CI: 1.99-27.10). In this sample, AAs under the age of 30 and those experiencing housing insecurity because of the COVID-19 pandemic were more likely to be resistant to receiving a free COVID-19 vaccination.

19.
Curr Issues Mol Biol ; 43(2): 845-867, 2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1335016

ABSTRACT

This review discusses the current testing methodologies for COVID-19 diagnosis and explores next-generation sequencing (NGS) technology for the detection of SARS-CoV-2 and monitoring phylogenetic evolution in the current COVID-19 pandemic. The review addresses the development, fundamentals, assay quality control and bioinformatics processing of the NGS data. This article provides a comprehensive review of the obstacles and opportunities facing the application of NGS technologies for the diagnosis, surveillance, and study of SARS-CoV-2 and other infectious diseases. Further, we have contemplated the opportunities and challenges inherent in the adoption of NGS technology as a diagnostic test with real-world examples of its utility in the fight against COVID-19.


Subject(s)
COVID-19/virology , High-Throughput Nucleotide Sequencing/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/genetics , Computational Biology/methods , Humans , Molecular Epidemiology/methods , Pandemics , Phylogeny , SARS-CoV-2/isolation & purification
20.
Acad Pathol ; 8: 23742895211023948, 2021.
Article in English | MEDLINE | ID: covidwho-1304387

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, led to unprecedented demands assigned to clinical diagnostic laboratories worldwide, forcing them to make significant changes to their regular workflow as they adapted to new diagnostic tests and sample volumes. Herein, we summarize the modifications/adaptation the laboratory had to exercise to cope with rapidly evolving situations in the current pandemic. In the first phase of the pandemic, the laboratory validated 2 reverse transcription polymerase chain reaction-based assays to test ∼1000 samples/day and rapidly modified procedures and validated various preanalytical and analytical steps to overcome the supply chain constraints that would have otherwise derailed testing efforts. Further, the pooling strategy was validated for wide-scale population screening using nasopharyngeal swab samples and saliva samples. The translational research arm of the laboratory pursued several initiatives to understand the variable clinical manifestations that this virus presented in the population. The phylogenetic evolution of the virus was investigated using next-generation sequencing technology. The laboratory has initiated the formation of a consortium that includes groups investigating genomes at the level of large structural variants, using genome optical mapping via this collaborative global effort. This article summarizes our journey as the laboratory has sought to adapt and continue to positively contribute to the unprecedented demands and challenges of this rapidly evolving pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL